13 research outputs found

    Rewiring Neural Interactions by Micro-Stimulation

    Get PDF
    Plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. In vitro, associative pairing of presynaptic spiking and stimulus-induced postsynaptic depolarization causes changes in the synaptic efficacy of the presynaptic neuron, when activated by extrinsic stimulation. In vivo, such paradigms can alter the responses of whole groups of neurons to stimulation. Here, we used in vivo spike-triggered stimulation to drive plastic changes in rat forelimb sensorimotor cortex, which we monitored using a statistical measure of functional connectivity inferred from the spiking statistics of the neurons during normal, spontaneous behavior. These induced plastic changes in inferred functional connectivity depended on the latency between trigger spike and stimulation, and appear to reflect a robust reorganization of the network. Such targeted connectivity changes might provide a tool for rerouting the flow of information through a network, with implications for both rehabilitation and brain–machine interface applications

    The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0

    Get PDF
    [1] The International Bathymetric Chart of the Arctic Ocean (IBCAO) released its first gridded bathymetric compilation in 1999. The IBCAO bathymetric portrayals have since supported a wide range of Arctic science activities, for example, by providing constraint for ocean circulation models and the means to define and formulate hypotheses about the geologic origin of Arctic undersea features. IBCAO Version 3.0 represents the largest improvement since 1999 taking advantage of new data sets collected by the circum-Arctic nations, opportunistic data collected from fishing vessels, data acquired from US Navy submarines and from research ships of various nations. Built using an improved gridding algorithm, this new grid is on a 500 meter spacing, revealing much greater details of the Arctic seafloor than IBCAO Version 1.0 (2.5 km) and Version 2.0 (2.0 km). The area covered by multibeam surveys has increased from ∼6% in Version 2.0 to ∼11% in Version 3.0

    EMG prediction from motor cortical recordings via a nonnegative point-process filter

    No full text
    A constrained point process filtering mechanism for prediction of electromyogram (EMG) signals from multi-channel neural spike recordings is proposed here. Filters from the Kalman family are inherently sub-optimal in dealing with non-Gaussian observations, or a state evolution that deviates from the Gaussianity assumption. To address these limitations, we modeled the non-Gaussian neural spike train observations by using a generalized linear model (GLM) that encapsulates covariates of neural activity, including the neurons’ own spiking history, concurrent ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of EMGs, we reformulated the Kalman filter (KF) in an optimization framework and utilized a non-negativity constraint. This structure characterizes the non-linear correspondence between neural activity and EMG signals reasonably. The EMGs were recorded from twelve forearm and hand muscles of a behaving monkey during a grip-force task. For the case of limited training data, the constrained point process filter improved the prediction accuracy when compared to a conventional Wiener cascade filter (a linear causal filter followed by a static non-linearity) for different bin sizes and delays between input spikes and EMG output. For longer training data sets, results of the proposed filter and that of the Wiener cascade filter were comparable

    Searching for the most detailed, continuous, late Miocene to Quaternary records of Antarctic Peninsula and West Antarctic Ice Sheet dynamics

    No full text
    Changes observed in the West Antarctic Ice Sheet (WAIS) and Antarctic Peninsula Ice Sheet (APIS) over recent decades include thinning and break up of ice shelves, glacier flow acceleration and grounding line retreat. How rapidly and how far these ice sheets will retreat in a warmer climate, however, remains uncertain. For example, it remains unclear whether or not the marine-based WAIS “collapsed” during Quaternary interglacial periods, including the last one, contributing more than 3 m to global sea-level rise. Continuous long-term records of ice sheet change with precise chronology are needed in order to answer these questions. On the Antarctic continental shelf, sedimentary records are interrupted by numerous unconformities resulting from glacial erosion, good core recovery has only been achieved from platforms sited on sea ice or ice shelves, and establishing reliable chronologies has proved challenging. In contrast, sediment drifts on the upper continental rise around Antarctica contain expanded, continuous successions dominated by muddy lithologies from which good recovery can be achieved using standard scientific ocean drilling methods. Ocean Drilling Program (ODP) Leg 178 demonstrated that sediment drifts west of the Antarctic Peninsula contain a rich high-resolution archive of Southern Ocean paleoceanography and APIS history that extends back to at least the late Miocene. The potential of existing ODP cores from the drifts is, however, compromised by incomplete composite sections and lack of precise chronological control. An International Ocean Discovery Program proposal (732-Full2) for future drilling on these drifts has been scientifically approved and is with the JOIDES Resolution Facilities Board for scheduling. The main aims of the proposal are to obtain continuous, high-resolution records from sites on sediment drifts off both the Antarctic Peninsula and West Antarctica (southern Bellingshausen Sea). The challenges will then be achieving good chronological control using a range of established and novel techniques and interpreting what facies variations indicate in terms of changes in the ice sheets. During a 2015 research cruise on RRS James Clark Ross (JR298) we obtained additional site survey data around the proposed sites including high-resolution multichannel seismic reflection data, piston cores and box cores. We will present results from this cruise and interpret them in terms of sedimentary processes that operated during the development of the drifts, and links between depositional systems on the continental rise, paleoice-sheet dynamics and paleoceanographic processes
    corecore